Thursolay:

- Review: $\frac{\text { common ODE. pdf. }}{\text { Brightspace } \rightarrow \text { Content } \rightarrow \text { Useful links }}$
- Review final from Spring 2017.

Next week:
Additional Office hours: Check in the announcement.
Dec. 16.

7.5 Periodic and Piecewise Continuous Input Functions

Unit Step Function

The unit step function at $t=a$ is defined by

$$
u_{a}(t)=u(t-a)= \begin{cases}0 & \text { if } t<a \tag{1}\\ 1 & \text { if } t \geq a\end{cases}
$$

and if $a=0$,

$$
u(t)= \begin{cases}0 & \text { if } t<0 \tag{2}\\ 1 & \text { if } t \geq 0\end{cases}
$$

If $a>0$, then

$$
\begin{gathered}
\text { by det } \\
\mathcal{L}\{u(t-a)\} \stackrel{\downarrow}{=} \int_{0}^{\infty} e^{-s t} u_{a}(t) d t=\int_{a}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty}\left[-\frac{e^{-s t}}{s}\right]_{t=a}^{b} .
\end{gathered}
$$

Thus

$$
\begin{equation*}
\mathcal{L}\{u(t-a)\}=\frac{e^{-a s}}{s}, \quad(s>0, a>0) \tag{3}
\end{equation*}
$$

- Recall $\mathcal{L}\{u(t)\}=\frac{1}{s}$, this equation implies that multiplication of the transform of $u(t)$ by $e^{-a s}$ corresponds to the translation $t \rightarrow t-a$ in the original independent variable.
- Theorem 1 tells us that this fact, when properly interpreted, is a general property of the Laplace transformation.

Theorem 1 Translation on the t-Axis
If $\mathcal{L}\{f(t)\}$ exists for $s>c$, then

$$
\begin{equation*}
\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} F(s) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a) \tag{5}
\end{equation*}
$$

for $s>c+a$.

Remark

- Note that

$$
u(t-a) f(t-a)= \begin{cases}0 & \text { if } t<a \tag{6}\\ f(t-a) & \text { if } t \geq a\end{cases}
$$

- Thus Theorem 1 implies that $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}$ is the function whose graph for $t \geq a$ is the translation by a units to the right of the graph of $f(t)$ for $t \geq 0$.

We will use Eq(5) to find the inverse Laplace transform of Example 1 and Example 2.
Recall

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a) \tag{5}
\end{equation*}
$$

Example 1 Find the inverse Laplace transform f of the given functions. Then sketch the graph of f.

$$
=\left(\left\{\begin{array}{ll}
0, & t<3 \\
1, & t \geqslant 3
\end{array}\right) \cdot(t-3)\right.
$$

$$
\begin{aligned}
& \begin{array}{ll}
F(s)=\frac{e^{-3 s}}{s^{2}} \\
\text { By } E g(s) . & \left.\alpha^{-1}\right\} \frac{e^{-3 s}}{s^{2}}
\end{array}{ }^{a=3} F(s)=u(t-3) \cdot f(t-3) \quad \begin{array}{l}
\frac{1}{s^{2}} \Rightarrow f(t)=t
\end{array} \\
& =n(t-3) \cdot(t-3)
\end{aligned}
$$

Example 2 Find the inverse Laplace transform f of the given functions. Then sketch the graph of f.

$$
F(s)=\frac{s\left(1+e^{-3 s}\right)}{s^{2}+\pi^{2}}
$$

Ans:

$$
=[1-u(t-3)] \cdot \cos \pi t
$$

$=\left\{\begin{array}{ll}0, & t<3 \\ 1, & t \geq 3\end{array}\right] \cdot \cos \pi t$

$$
=\left(\left\{\begin{array}{l}
1-0 ; 1 t<3 \\
1-1=0, t \geqslant 3
\end{array}\right) \cdot \cos \pi t\right.
$$

Note

$$
=\left\{\begin{array}{cc}
\cos \pi t, & t<3 \\
0, & t \geqslant 3
\end{array}\right.
$$

$$
1-u(t-3)=\left\{\begin{array}{ll}
1, & t<3 \\
0, & t \geqslant 3
\end{array} \rightarrow \xrightarrow[3]{i} \quad \frac{1}{3} \quad 0, t \geqslant 3\right.
$$

$$
\begin{aligned}
& =\frac{s}{s^{2}+\pi^{2}}+e^{-3 s} \frac{s}{s^{2}+\pi^{2}} \mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a) \\
& \begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & \left.=\alpha^{-1}\left\{\frac{s}{s^{2}+\pi^{2}}\right\}+\alpha^{-1}\left\{e^{-3 s} \cdot \frac{s^{2}}{s^{2}+\pi^{2}}\right\}\right\} \begin{array}{l}
F(s)=\frac{s}{s^{2}+\pi^{2}} \\
\downarrow \\
\\
\\
\\
f(t)=\cos \pi t+u(t-3) \cdot f(t-3) \quad \cos \pi t
\end{array}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\cos \pi t-n(t-3) \cdot \cos \pi t
\end{aligned}
$$

We will use Eq (6) to find the Laplace transform of Example 3 and Example 4.
Recall

$$
\begin{equation*}
\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} F(s) \tag{6}
\end{equation*}
$$

Example 3 Find the Laplace transform of the given function.

$$
f(t)= \begin{cases}\cos 2 t & \text { if } 0 \leq t<2 \pi \tag{7}\\ 0 & \text { if } t \geq 2 \pi\end{cases}
$$

The graph of $f(t)$ is shown in the figure.
ANS: We need to write $f(t)$ in terms of $u(t-a) \& g^{(t-a)}$ when $t \geqslant 0$.

$$
u(t-2 \pi)= \begin{cases}0, & 0 \leqslant t<2 \pi \\ 1, & t \geqslant 2 \pi\end{cases}
$$

Then

Then

$$
\begin{aligned}
& =\frac{s}{s^{2}+4}-e^{-2 \pi s} \cdot \frac{s}{s^{2}+4} \\
& =s \frac{\left(1-e^{-2 \pi s}\right)}{s^{2}+4}
\end{aligned}
$$

Example 4 Find the Laplace transform of the given function.

$$
f(t)= \begin{cases}\sin t & \text { if } 0 \leq t \leq 3 \pi \tag{8}\\ 0 & \text { if } t>3 \pi\end{cases}
$$

Ans:

$$
\begin{array}{rlrl}
f(t) & =[1-u(t-3 \pi)] \cdot \sin t \quad \text { want } t-3 \pi \\
& =\sin t-u(t-3 \pi) \cdot \sin t \quad & \text { Recall } \\
& =\sin t+u(t-3 \pi) \cdot \sin (t-3 \pi) & \sin (t-3 \pi) \\
& =-\sin t
\end{array}
$$

$$
\begin{array}{r}
\mathcal{L}\{f(t)\}=\mathcal{L}\{\sin t\}+\mathcal{L}\{u(t-3 \pi) \cdot \underbrace{\sin (t-3 \pi)}_{f(t-3 \pi)}\} \\
v(t)=\sin t
\end{array}
$$

$$
\begin{aligned}
& =\frac{1}{s^{2}+1}+e^{-3 \pi s} \cdot \frac{1}{s^{2}+1} \\
& =\frac{1+e^{-3 \pi s}}{s^{2}+1}
\end{aligned}
$$

Reading material

Transforms of Periodic Functions

Periodic Forcing Functions

- Periodic forcing functions in practical mechanical or electrical systems often are more complicated than pure sines or cosines.
- The nonconstant function $f(t)$ defined for $t \geq 0$ is said to be periodic if there is a number $p>0$ such that

$$
\begin{equation*}
f(t+p)=f(t) \tag{9}
\end{equation*}
$$

for all $t \geq 0$.

- The least positive value of p (if any) for which this equation holds is called the period of f.

Periodic Functions

- Such a function is shown in the figure.

- Theorem 2 simplifies the computation of the Laplace transform of a periodic function.

Theorem 2 Transforms of Periodic Functions

Let $f(t)$ be periodic with period p and piecewise continuous for $t \geq 0$.
Then the transform $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>0$ and is given by

$$
\begin{equation*}
F(s)=\frac{1}{1-e^{-p s}} \int_{0}^{p} e^{-s t} f(t) d t \tag{10}
\end{equation*}
$$

